4 research outputs found

    Post-Quantum Provably-Secure Authentication and MAC from Mersenne Primes

    Get PDF
    This paper presents a novel, yet efficient secret-key authentication and MAC, which provide post-quantum security promise, whose security is reduced to the quantum-safe conjectured hardness of Mersenne Low Hamming Combination (MERS) assumption recently introduced by Aggarwal, Joux, Prakash, and Santha (CRYPTO 2018). Our protocols are very suitable to weak devices like smart card and RFID tags

    Uniform sampling for timed automata with application to language inclusion measurement

    No full text
    Monte Carlo model checking introduced by Smolka and Grosu is an approach to analyse non-probabilistic models using sampling and draw conclusions with a given confidence interval by applying statistical inference. Though not exhaustive, the method enables verification of complex models, even in cases where the underlying problem is undecidable. In this paper we develop Monte Carlo model checking techniques to evaluate quantitative properties of timed languages. Our approach is based on uniform random sampling of behaviours, as opposed to isotropic sampling that chooses the next step uniformly at random. The uniformity is defined with respect to volume measure of timed languages previously studied by Asarin, Basset and Degorre. We improve over their work by employing a zone graph abstraction instead of the region graph abstraction and incorporating uniform sampling within a zone-based Monte Carlo model checking framework. We implement our algorithms using tools PRISM, SageMath and COSMOS, and demonstrate their usefulness on statistical language inclusion measurement in terms of volume

    Uniform sampling for timed automata with application to language inclusion measurement

    No full text
    Monte Carlo model checking introduced by Smolka and Grosu is an approach to analyse non-probabilistic models using sampling and draw conclusions with a given confidence interval by applying statistical inference. Though not exhaustive, the method enables verification of complex models, even in cases where the underlying problem is undecidable. In this paper we develop Monte Carlo model checking techniques to evaluate quantitative properties of timed languages. Our approach is based on uniform random sampling of behaviours, as opposed to isotropic sampling that chooses the next step uniformly at random. The uniformity is defined with respect to volume measure of timed languages previously studied by Asarin, Basset and Degorre. We improve over their work by employing a zone graph abstraction instead of the region graph abstraction and incorporating uniform sampling within a zone-based Monte Carlo model checking framework. We implement our algorithms using tools PRISM, SageMath and COSMOS, and demonstrate their usefulness on statistical language inclusion measurement in terms of volume
    corecore